No Image

Трубы для теплового насоса

СОДЕРЖАНИЕ
1 просмотров
15 ноября 2019

Грунт является наиболее универсальным источником рассеянного тепла. Он аккумулирует солнечную энергию и круглый год подогревается от земного ядра. При этом он всегда «под ногами» и способен отдавать тепло вне зависимости от погоды. Ведь на глубине уже 5–7 м температура практически постоянна в течение всего года. Для средней полосы России она составляет 5–8°С. Это очень подходящие условия для работы теплового насоса. Более того, в верхних слоях земли минимум температуры достигается на пару месяцев позже пика морозов — нужда в интенсивном обогреве к этому времени уменьшается. В целом же грунт довольно надежно поставляет калории. Необходимая энергия собирается теплообменником, заглубленным в землю, и аккумулируется в носителе, который затем насосом подается в испаритель теплового насоса и возвращается обратно за новой порцией тепла. В качестве такого переносчика энергии используют незамерзающую экологически безвредную жидкость (ее называют также «рассолом» или антифризом). Это может быть тридцатипроцентный водный раствор этиленгликоля или пропиленгликоля.

Грунтовый коллектор (горизонтальный) представляет собой длинную трубу, горизонтально уложенную под слоем грунта. Главное достоинство — универсальность и простота монтажа. Нашел свободную площадку — рой канавки и укладывай. Недостаток — большая потребная площадь под коллектор — 25–50 м 2 на 1 кВт мощности (причем площадку можно использовать только под газон или однолетние цветы). Есть разные схемы раскладки трубы: петля, змейка, зигзаг, плоские и винтовые спирали разных форм и т. п. Выбор определяется теплопроводностью грунта и геометрией участка. Производительность теплосбора больше на увлажненных суглинках и меньше на сухих песчаных участках. В среднем 1 м 2 поверхности грунта может обеспечить «поставку» 10–35 Вт мощности. Длину трубы в одной петле, причем цельной, без разъемов, стремятся ограничить (не более 600 м), иначе заметно увеличивается расход энергии на циркуляционном насосе. Если нужна большая мощность, петель делают несколько.

В случае использовании грунта возможны два варианта: укладка металлопластиковых труб в траншеи глубиной 1,2–1,5 метра (примерно на 0.2 м ниже глубины промерзания (более глубокая укладка опасна тем, что лед, намерзший в результате работы вокруг труб, не успеет растаять за весну и лето), либо в вертикальные скважины глубиной 20-100 м. Иногда трубы укладывают в виде спиралей в траншеи глубиной 2–4 м. Срок службы такой траншеи составляет порядка 20–25 лет. Удобство такого способа укладки в меньшей суммарной длине траншей, например, для суммарной длины укладываемых труб в 800 м нужна траншея длиной 25 м. Максимальная теплоотдача поверхностного грунта составляет 50–70 кВт*ч/м 2 в год.

Съем тепла на 1 м трубы зависит от многих параметров (глубины, наличия грунтовых вод, качества грунта). Ориентировочно можно считать, что для горизонтальных коллекторов съем тепла составляет 20 Вт/м. Более точно: сухой песок — 10 Вт/м; сухая глина — 20 Вт/м; влажная глина — 25 Вт/м; глина с большим содержанием воды — 35 Вт/м.

На участке, над коллектором, не должно быть строений, чтобы летом прошла регенерация за счет солнечной радиации, поскольку только примерно 20% тепла поступает из поверхности земли. Минимальное расстояние между проложенными трубами должно составлять 0,7–0,8 м. Длина одной траншеи должна быть от 30 до 120 м. В качестве теплоносителя нужно использовать раствор гликоля (25%). При этом нужно учесть в расчетах, что теплоемкость будет 3,7 кДж/кгК при 0°С и концентрации гликоля 25%, плотность 1,05 г/см 3 , а потери давления в трубах будут в 1,5 раза больше по сравнению с водой.

Опыт показывает, что наиболее приемлемая конструкция системы теплосбора получается при применении полиэтиленовых труб РЕ ПНД6 диаметром 32 мм, заполненных пропиленгликолем (30%). Для укладки каждой ветви выкапывают траншею длиной до 50 м, шириной 0,8 м и глубиной 2 м. На ее дно насыпают подоснову из глины (5 см). Потом около стенки траншеи в прямом и обратном направлениях прокладывают трубу, наполненную водой под давлением 4 атм. Сверху ее засыпают слоем глины толщиной 10 см, который трамбуют и проливают водой. Затем укладывают грунт толщиной 20–30 см, а поверх, в глиняном «пироге», — оставшуюся часть трубы. Ее концы заводят в помещение с таким расчетом, чтобы снаружи не было ни одного стыка удлинения. Аналогично укладывают вторую ветвь. При этом расстояние между траншеями составляет минимум 10 м.

    Содержимое:

  1. Устройство и принцип работы грунтового теплонасоса
  2. Расчет и выбор теплового насоса земля-вода
  3. Основы монтажа теплонасоса земля-вода
  1. Требования к помещению под теплонасос
  2. Какую трубу использовать для теплонасоса в землю
  3. Организация укладки контура в грунт
  • Вопросы и ответы о теплонасосах земля-вода
  • В так называемую «зеленую линию» отопительного оборудования входят станции, работающие на альтернативных видах топлива и использующие возобновляемые источники энергии. Производители выпускают солнечные коллекторы, различные виды теплонасосов. Источниками энергии для последних, становятся воздух, земля, водоемы и артезианские скважины.

    Тепловой насос грунт-вода, является одним из самых востребованных видов оборудования, предназначенного для отопления частных и промышленных объектов.

    Устройство и принцип работы грунтового теплового насоса

    Благодаря слаженной работе всей установки, грунтовые тепловые насосы для отопления дома, выполняют функции обогрева, охлаждения и обеспечения потребности в ГВС.

    Первичный контур работает следующим образом:

    • Земля, ниже точки промерзания, сохраняет стабильную положительную температуру. Начиная с 30 м, нагрев грунта увеличатся до 18°С. Причем, на стабильность температуры не влияют природные факторы и время года.
    • Чтобы извлечь тепло, используют грунтовый коллектор теплового насоса или первичный контур отопления. Трубы укладывают на 30-50 см ниже точки промерзания. Внутри труб, по замкнутому кругу, циркулирует солевой раствор или пропиленгликоль. Жидкость нагревается до 8°С, после чего направляется в теплонасос. Такой температуры гликоля более чем достаточно для нагрева теплоносителя.
    • В корпусе насоса установлен испаритель, который отбирает низко потенциальную энергию и преобразовывает ее в тепло, достаточное для обогрева дома и нагрева горячей воды.

    После того как тепловая энергия поступила на приемник насоса, функции первичного контура заканчиваются и в работу вступает теплообменник станции. Выполняется преобразование тепловой энергии из грунтового контура.

    Дальнейший принцип работы напоминает тот, что используют холодильники или кондиционеры, только вместо охлаждения, устройство работает на нагрев:

    • В корпусе теплового насоса земля-вода, находится еще одна замкнутая система трубопровода, по которому циркулирует фреон – газ, легко преобразовывающийся из газообразного в жидкое состояние и наоборот.
    • В испарителе происходит преобразование фреона в газ. При этом, поглощается большое количество тепловой энергии, доставленной от земли первичным контуром.
    • Газ поступает в компрессор, происходит увеличение давления хладагента, при этом его температура существенно вырастает. Под давлением, фреон поступает в следующую камеру – конденсатор.
    • Главной функцией конденсатора является обеспечение достаточных условий для обратного преобразования фреона в жидкость. Происходит процесс направленного конденсатообразования. Через стенки аккумулируется полученное тепло и передается водяному контуру отопления дома. В результате расширения хладагента, выделяется дополнительное количество тепла, достаточного, чтобы нагреть теплоноситель до 60-65°С.
    • Проходя через расширительный клапан, фреон окончательно охлаждается и преобразовывается в жидкое состояние, после чего возвращается в испаритель.
    • Процесс передачи тепла выполняется посредством косвенного нагрева. Используется емкость, внутри которой размещен конденсатор. Тепло поступает через стенки блока, в результате чего нагревается жидкость внутри накопителя. Емкость подключена к системе отопления и ГВС.

    Расчет и выбор теплового насоса земля-вода

    Чтобы применение тепловых насосов с использованием теплоты грунта было эффективным, необходимо произвести грамотные расчеты и подобрать оборудование, максимально подходящее в каждом отдельном случае.

    Перед принятием решения потребуется определить следующее:

    1. Будет ли станция использоваться как основной или дополнительный источник тепла.
    2. Какие функции, помимо нагрева теплоносителя, должен выполнять тепловой насос.

    Производительность станции напрямую влияет на оптимальную длину трубы земляного контура.

    При предварительных расчетах, протяженность трубы и необходимые размеры участка, достаточного для размещения коллектора, высчитывают, просто умножая отапливаемую площадь дома на 2. Следовательно, чтобы уложить горизонтальный контур для здания на 200 м², потребуется придомовая территория, равная 400 м² (существуют варианты вертикального и наклонного расположения, позволяющие расположить коллектор на меньшей площади).

    Читайте также:  Насекомые на орхидеях фото

    Основы монтажа теплонасоса земля-вода

    Альтернативное отопление загородного дома на основе грунтового теплонасоса требует грамотного планирования, изготовления проектной документации, получения необходимых разрешений и проведения геодезических изысканий на участке. Только при выполнении всех этих требований, добиваются максимальной теплоотдачи системы.

    Монтажные работы и установку теплового насоса типа грунт – вода, осуществляют в следующем порядке:

    • Подготовительные работы и согласования – определяется тип грунта, анализируется площадь участка, подбираются варианты укладки труб, максимально соответствующие параметрам. Дополнительно получают все необходимые документы и проводят согласования с государственными учреждениями.
    • Устанавливают насос, подключают электричество, устанавливают автоматы. Проверяют работоспособность установки. Подводят контур системы отопления дома.
    • Укладывают водяной коллектор в грунт.
    • Проверяют рабочие параметры.
    • Сдают объект хозяевам дома.

    Требования к помещению под теплонасос

    Насосы, берущие тепло из слоев грунта, абсолютно безопасны. Каких-либо специфических требований, относительно помещений, используемых под котельную, не существует. Практика показала, что целесообразней устанавливать станции в котельных, соответствующих следующим требованиям:

    • Площадь – помимо самого насоса, в помещении монтируют накопительную емкость. Размеры котельной должны позволить разместить все оборудования и обеспечить беспрепятственный доступ для обслуживания.
    • Электрика – теплообмен между грунтом и грунтовым теплообменником происходит за счет работы энергозависимого оборудования. Подключение выполняется в согласии с действующими правилами. Автоматы устанавливают снаружи помещения. Обязательно подключение УЗО и заземления.
    • Освещение – рекомендуется, чтобы в помещении было естественное и принудительное освещение.
    • Звукоизоляция – большинство теплонасосов, во время работы издает шум около 40 дБ. Подобная интенсивность шумовых помех возникает при работе холодильника, кондиционера или принудительной вентиляции. По этой причине, дополнительная шумоизоляция не требуется, но комната под котельную должна закрываться дверью.

    Основные требования к помещениям связаны с безопасным использованием электричества и созданием необходимых условий для простого обслуживания станции.

    Какую трубу использовать для теплового насоса в землю

    КПД теплонасосов с контуром в земле, во многом зависит от правильного выбора трубы для водяного контура. Коллектор, уложенный в землю, должен обеспечивать беспрепятственный теплообмен. Не лишним будет обратить внимание на стоимость трубы, так как при монтаже потребуется уложить большое количество материала.

    Чаще всего для изготовления земляного коллектора используют виды труб, из следующих материалов:

    • Медь – медный земляной контур отличается высокой теплопроводимостью, что обеспечивает максимальный КПД насоса. Срок службы трубы не менее 100 лет. Материал устойчив к коррозии и воздействию рассола для грунтового контура.
      Широкого распространения медные системы не получили по причине высокой стоимости. Так, для отопления дома в дома в 200 м², для грунтового коллектора потребуется уложить около 400 погонных метров медной трубы. Приемлемый вариант для небольших станций.
      Проведение монтажа выполняется методом пайки. В качестве альтернативы можно использовать стальные трубы.
    • Полиэтиленовые трубы – имеют меньшую теплоотдачу, но стоят дешевле, отличаются прочностью и надежностью. Популярность труб из сшитого полиэтилена обеспечивает срок эксплуатации, достигающий 50 лет, а также простота укладки и проведения монтажных работ.

    При выборе материала, рекомендуется прислушиваться к мнению проектно-монтажной организации, выполняющей установку и расчет земляного коллектора.

    Организация укладки контура в грунт

    • Глубина укладки – промерзание грунта при использовании теплонасоса несколько снижается, но все же присутствует. Минимальное расстояние контура от поверхности составляет 1,5-2 м.
    • Шаг между трубами – минимальное расстояние между проложенными трубами 1 м. Допускается сокращение шага до 0,7 м при высокой теплоотдаче грунта (известняк и гранит). Расстояние между траншеями при укладке горизонтальных зондов нельзя сокращать по причине снижения показателей теплоотдачи.
    • Способы укладки земляного коллектора – на выбор влияют общая площадь участка, близкое расположение термальных источников, производительность системы.
    • Тип почвы – наибольшая тепловая емкость у каменистого грунта, песка, в районе пролегания поверхностных грунтовых вод. Наименьшие параметры у песчаной почвы, расположенной вдалеке от водоемов.

    Глубина укладки земляного горизонтального контура зависит от выбранного способа прокладки труб. Тип разводки контура влияет на эффективность системы отопления. Существует три основных типа укладки:

    • Горизонтальный – трубопровода размещают близко к поверхности земли. Такое решение имеет относительно небольшие параметры производительности, находящиеся в пределах 30-40 Вт на каждый погонный метр контура.
      Глубина прокладки труб внешнего горизонтального коллектора зависит от средней точки промерзания грунта в регионе. Трубопровод углубляют ниже на 0,3-0,5 м, в результате точка залегания труб 1,3-2 м.
      Недостатком данного решения является то, что для использования низкопотенциальной тепловой энергии земли потребуется сделать коллектор, занимающий огромную площадь, что не всегда возможно. Требуются глобальные земляные работы по устройству наружного зонда. Сажать деревья по всей площади укладки коллектора запрещается.

  • Вертикальный – принцип работы теплонасоса грунт-вода оптимально соответствует теплоотдаче, получаемой от вертикальных скважин. После достижения глубины свыше 30 м, земля нагревается и стабильно поддерживает температуру +18°С. Трубы коллектора располагают вертикально. Максимальная глубина скважины 150 м.
    Грунтовый насос работает как кондиционер, только при условии обращения процесса охлаждения в обратную сторону. Соответственно, чем больше тепловой энергии, полученной из грунта будет поглощено, тем эффективней работает станция. Вертикальное расположение скважин обеспечивает нужным теплом и сокращает (по сравнению с горизонтальной установкой) необходимую площадь.
    Минусом решения является необходимость в использовании специального бурового оборудования и установок. При расчетах учитывают, что в глубоких скважинах (более 30 м) происходит ежегодное изменение температуры грунта при использовании теплового насоса грунт-вода. Со временем теплоотдача стабилизируется.
  • Наклонный – даже простой расчёт геоконтура теплового насоса покажет, что данное решения является наиболее правильным. Занимаемая под установку площадь участка не более 4 м², допускается бурение даже в подвале своего дома.
    Для начала изготавливается шахта, которую опускают на глубину 4 м. Дальше, в разные стороны бурят скважины, расположенные под углом. В подземных коллекторах закладывают трубы, соединенные с теплоприемником в доме.
    Чтобы избежать промерзания грунта от контура, пустоты между трубами и землей заполняют специальным строительным раствором с хорошей теплопроводностью.
  • После монтажа, первичный водяной контур заполняют незамерзающей жидкостью для коллектора – рассолом. Состав должен иметь следующие характеристики:

    1. Иметь хорошие параметры теплоотдачи.
    2. Не замерзать при температуре -50°С.
    3. Сохранять текучесть после нескольких циклов нагрев/охлаждение.

    В качестве рассола обычно используется пропиленгликоль. Продукт, имеющий оптимальные показатели вязкости и рабочие показатели, позволяющие сохранять параметры при температуре от +12 до -50°С. Рассольно-водяной тепловой насос может работать и на других типах жидкости. Тип рассола указан в технической документации к теплонасосу.

    После заполнения, проверяется наличие повреждений земляного контура. Если присутствует течь, участок заменяется, дефекты устраняются.

    Вопросы и ответы о теплонасосах земля-вода

    В странах ЕС, системы получили широкое распространение и эксплуатируются уже более 30 лет. Для отечественного потребителя, использование теплоты грунта в качестве низкопотенциального источника энергии для теплового насоса, является относительно новым методом отопления. Не удивительно, что, судя по отзывам консультантов компаний, продающих станции, покупатели все снова и снова задают одни и те же вопросы. В частности, следующие:

    • Если дом отапливается за счет тепла земли, будет ли эффективным использование теплонасоса зимой?
    • Стоит ли отказаться от привычного природного газа в пользу альтернативного отопления.
    • Во сколько обойдется приобретение и установка станции.

    Чтобы сократить время, необходимое на расспросы, ниже приводятся подробные ответы на эти и другие волнующие потребителей вопросы.

    Можно ли отопить дом грунтовым насосом зимой?

    Оптимальная температура грунта, достаточная для беспрерывной работы насоса 6-8°С. Таким параметрам соответствует нагрев земли, в 1,5-2 м от поверхности. Если правильно расположить контур, с соблюдением минимального шага, выхолаживание грунта не происходит. Устройство земляного коллектора позволит отапливать помещение круглый год в умеренных широтах и даже на Севере.

    Грунтовые тепловые насосы с закрытым циклом, преобразовывают низко потенциальную тепловую энергию, нагревая с ее помощью теплоноситель и воду для ГВС до температуры 60-65°С. Отапливать помещение лучше посредством теплых полов. В остальном, производительности насоса будет достаточно для обогрева.

    Читайте также:  Арахисовая паста калорийность 1 чайная ложка

    Чем эффективнее обогревать дом – газом или грунтовым насосом?

    Мировой уровень использования низкопотенциальной тепловой энергии земли неуклонно растет. Некоторые страны ЕС почти полностью отказались от использования газа, в пользу альтернативных видов энергии. В Германии, широко используются электростанции, работающие на тепле, получаемом от гниения отходов (используется такой же принцип работы, как и в насосах, земля – вода).

    Газовое оборудование имеет определенные преимущества:

    • Стабильная производительность – существует влияние температуры грунта на мощность теплового насоса. Котел, работающий на газе, выдает указанную тепловую энергию, независимо от времени года.
    • Стоимость подключения – оформление документов на газовый котел и подключение, в среднем обойдется в 1.5-2 тыс. $. Установка аналогичного теплового насоса стоит приблизительно 6000$.

    На этом преимущества газового оборудования заканчиваются. Стоит отметить, что тепловой насос, даже по сравнению с экономичным котлом на газе, требует меньше расходов на энергоносители. Полная окупаемость затрат достигается уже спустя 6-8 лет, после этого станция начинает работать в плюс.

    Современные тепловые насосы имеют коэффициент СОР, равный 5, что соответствует выработке 5 кВт тепла на каждый киловатт потраченной электроэнергии. Опыт эксплуатации теплонасоса земля-вода доказывает, что им можно с успехом заменить традиционные газовые котлы.

    Первые варианты теплонасосов могли лишь частично удовлетворить потребности в тепловой энергии. Современные разновидности более эффективны и могут применяться для систем отопления. Именно поэтому смонтировать тепловой насос своими руками пытаются многие домовладельцы.

    Мы расскажем, как выбрать оптимальный вариант теплового насоса с учетом гео-данных участка, на котором его планируется установить. В предложенной к рассмотрению статье подробно описан принцип действия систем использования “зеленой энергии”, перечислены отличия. С учетом наших советов вы, без сомнения, остановитесь на эффективном типе.

    Для самостоятельных мастеров мы приводим технологию сборки теплового насоса. Представленную к рассмотрению информацию дополняют наглядные схемы, подборки фото и развернутый видео-инструктаж в двух частях.

    Что такое тепловой насос и как он работает?

    Под термином тепловой насос понимается набор определенного оборудования. Основной функцией этого оборудования является сбор тепловой энергии и ее транспортировка к потребителю. Источником такой энергии может стать любое тело или среда, обладающая температурой от +1º и более градусов.

    В окружающей нас среде источников низкотемпературного тепла более чем достаточно. Это промышленные отходы предприятий, тепловых и атомных электростанций, канализационные стоки и пр. Для работы тепловых насосов в сфере отопления дома нужны три самостоятельно восстанавливающихся природных источника – воздух, вода, земля.

    Три перечисленных потенциальных поставщика энергии напрямую связаны с энергией солнца, которое путем нагревания приводит в движение воздух с ветром и сообщает тепловую энергию земле. Именно выбор источника является основными критерием, согласно которому классифицируют тепловые насосные системы.

    Принцип действия тепловых насосов базируется на способности тел или сред передавать тепловую энергию другому телу или среде. Получатели и поставщики энергии в тепловых насосных системах работают обычно в паре.

    Так различают следующие виды тепловых насосов:

    • Воздух – вода.
    • Земля – вода.
    • Вода – воздух.
    • Вода – вода.
    • Земля – воздух.
    • Вода – вода
    • Воздух – воздух.

    При этом первое слово определяет тип среды, у которой система отбирает низкотемпературное тепло. Второе указывает на вид носителя, которому и передается эта тепловая энергия. Так, в тепловых насосах вода – вода, тепло отбирается у водной среды и в качестве теплоносителя используется жидкость.

    Современные тепловые насосы используют три основных источника тепловой энергии. Это – грунт, вода и воздушная среда. Самый простой из этих вариантов – воздушный тепловой насос. Популярность таких систем связана с их довольно несложной конструкцией и простотой монтажа.

    Однако несмотря на такую популярность, эти разновидности имеют довольно низкую производительность. К тому же КПД нестабилен и зависим сезонных колебаний температурного режима.

    С понижением температуры их производительность значительно падает. Такие варианты тепловых насосов можно рассматривать как дополнение к имеющемуся основному источнику тепловой энергии.

    Варианты оборудования, использующего тепло грунта, считаются более эффективными. Грунт получает и аккумулирует тепловую энергию не только от Солнца, он постоянно подогревается за счет энергии земного ядра.

    То есть грунт является своеобразным тепловым аккумулятором, мощность которого, практически, не ограничена. Причем температура грунта, особенно на некоторой глубине, постоянна и колеблется в незначительных пределах.

    Сфера применения энергии, вырабатываемой тепловыми насосами:

    Постоянство температуры источника является важным фактором стабильной и эффективной работы данного вида энергетического оборудования. Аналогичными характеристиками обладают системы, в которых водная среда является основным источником тепловой энергии. Коллектор таких насосов располагают либо в скважине, где он оказывается в водоносном слое, либо в водоеме.

    Среднегодовая температура таких источников, как грунт и вода, варьируется от +7º до + 12º С. Такой температуры вполне достаточно для того, чтобы обеспечить эффективную работу системы.

    Основные элементы конструкции тепловых насосов

    Для того чтобы установка получения энергии работала согласно принципам работы теплового насоса, в его конструкции должны присутствовать 4 основных агрегата, это:

    • Компрессор.
    • Испаритель.
    • Конденсатор.
    • Дроссельный клапан.

    Важным элементом конструкции теплового насоса является компрессор. Его основная функция – повышение давления и температуры паров, образующихся в результате кипения хладагента. Для климатической техники и тепловых насосов в частности применяются современные спиральные компрессоры.

    Такие компрессоры рассчитаны на эксплуатацию при минусовых температурах. В отличие от других разновидностей спиральные компрессоры производят мало шума и работают, как при низких температурах кипения газа, так и при высоких температурах конденсации. Несомненным преимуществом считаются их компактные размеры и небольшой удельный вес.

    Испаритель как конструктивный элемент представляет собой емкость, в которой происходит превращение в пар жидкого хладагента. Хладагент, циркулируя по замкнутому контуру, проходит через испаритель. В нем хладагент разогревается и превращается в пар. Образующийся пар под низким давлением направляется в сторону компрессора.

    В компрессоре пары хладагента подвергаются действию давления и их температура возрастает. Компрессор перекачивает под большим давлением разогретый пар в сторону конденсатора.

    Следующий конструктивный элемент системы – конденсатор. Его функция сводится к отдаче тепловой энергии внутреннему контуру отопительной системы.

    Серийные образцы, изготавливаемые промышленными предприятиями, оснащаются пластинчатыми теплообменниками. Основным материалом для таких конденсаторов служит легированная сталь или медь.

    Терморегулирующий, или иначе дроссельный, клапан устанавливается в начале той части гидравлического контура, где циркулирующая среда высокого давления преобразуется в среду с низким давлением. Точнее дроссель в паре с компрессором делят контур теплового насоса на две части: одну с высокими параметрами давления, другую – с низкими.

    При прохождении через расширительный дроссельный вентиль циркулирующая по замкнутому контуру жидкость частично испаряется, вследствие чего давление вместе с температурой падают. Затем поступает в теплообменник, сообщающийся с окружающей средой. Там захватывает энергию среды и переносит ее обратно в систему.

    С помощью дроссельного клапана происходит регулирование потока хладагента в сторону испарителя. При выборе клапана нужно учитывать параметры системы. Клапан должен соответствовать этим параметрам.

    Выбор типа теплового насоса

    Основным показателем этой системы обогрева является мощность. От мощности в первую очередь будут зависеть и финансовые затраты на покупку оборудования и выбор того либо иного источника низкотемпературного тепла. Чем выше мощность тепловой насосной системы, тем больше стоимость комплектующих элементов.

    В первую очередь имеется в виду мощность компрессора, глубина скважин для геотермических зондов, либо площадь для размещения горизонтального коллектора. Правильные термодинамические расчеты являются своеобразной гарантией того, что система будет эффективно работать.

    Для начала следует изучить участок, который планируется для монтажа насоса. Идеальным условием будет наличие на этом участке водоема. Использование варианта типа вода-вода значительно сократит объем земляных работ.

    Использование тепла земли напротив предполагает большое количество работ, связанных с выемкой грунта. Системы, которые в качестве низкопотенциального тепла используют водную среду, считаются наиболее эффективными.

    Читайте также:  Породы зайцев с фотографиями и названиями

    Использовать тепловую энергию грунта можно двумя способами. Первый предполагает бурение скважин диаметром 100-168 мм. Глубина таких скважин, в зависимости от параметров системы, может достигать 100 м и более.

    В эти скважины помещают специальные зонды. При втором способе используется коллектор из труб. Такой коллектор размещается под землей в горизонтальной плоскости. Для этого варианта необходимо достаточно большая площадь.

    Для укладки коллектора идеальными считаются участки с влажным грунтом. Естественно, бурение скважин обойдется дороже, нежели горизонтальное расположение коллектора. Однако не на каждом участке есть свободные площади. На один кВт мощности теплового насоса нужно от 30 до 50м² площади.

    В случае с наличием на участке высоко залегающего горизонта грунтовых вод, теплообменники можно устроить в двух расположенных на расстоянии около 15 м друг от дружки скважинах.

    Отбор тепловой энергии в таких системах путем перекачивания грунтовой воды по замкнутому контуру, части которого расположены в скважинах. Такая система нуждается в установке фильтра и периодической чистке теплообменника.

    Самая простая и дешевая схема теплового насоса основана на извлечении тепловой энергии из воздуха. Некогда она стала базой для устройства холодильников, позже согласно ее принципам разработаны были кондиционеры.

    Эффективность различных типов данного оборудования не одинакова. Наименьшими показателями обладают насосы, использующие воздушную среду. К тому же эти показатели напрямую зависят от погодных условий.

    Грунтовые разновидности тепловых насосов имеют стабильные показатели. Коэффициент эффективности данных систем варьируется в пределах 2,8 -3,3. Наибольшей эффективность обладают системы вода-вода. Это связано, в первую очередь, со стабильностью температуры источника.

    Надо заметить, что чем глубже расположен в водоеме коллектор насоса, тем стабильнее будет температура. Для получения мощности системы в 10КВт, необходимо около 300 метров трубопровода.

    Основным параметром, характеризующим эффективность работы теплового насоса, считается его коэффициент преобразования. Чем выше коэффициент преобразования, тем эффективнее считается тепловой насос.

    Сборка теплового насоса своими силами

    Зная схему действия и устройство теплового насоса, собрать и смонтировать самостоятельно систему альтернативного отопления вполне возможно. Перед началом работ необходимо рассчитать все основные параметры будущей системы. Для расчета параметров будущего насоса можно воспользоваться программным обеспечением , предназначенным для оптимизации систем охлаждения.

    Наиболее простым в сооружении вариантом является система воздух-вода. Она не требует сложных работ по устройству внешнего контура, который присущ водным и грунтовым разновидностям тепловых насосов. Для монтажа понадобятся лишь два канала, по одному из которых будет подаваться воздух, по второму отводиться отработанная масса.

    Кроме вентилятора необходимо обзавестись компрессором нужной мощности. Для такого агрегата вполне подойдет компрессор, которым оснащаются обычные сплит-системы. Необязательно покупать новый агрегат.

    Можно снять его со старого оборудования или использовать комплектующие старого холодильника. Желательно применять спиральную разновидность. Эти варианты компрессоров помимо обладания достаточной эффективностью создают высокое давление, обеспечивающее повышение температуры.

    Для устройства конденсатора понадобится емкость и медная труба. Из трубы делается змеевик. Для его изготовления используется любое цилиндрическое тело нужного диаметра. Намотав на него медную трубу можно легко и быстро изготовить этот элемент конструкции.

    Готовый змеевик монтируется в предварительно разрезанную пополам емкость. Для изготовления емкости лучше использовать материалы, стойкие к коррозионным процессам. После помещения в него змеевика, половинки бака свариваются.

    Площадь змеевика рассчитывается по следующей формуле:

    МТ/0,8 РТ,

    • МТ – мощность тепловой энергии, которая выдает система.
    • 0,8 – коэффициент теплопроводности при взаимодействии воды с материалом змеевика.
    • РТ – разница температур воды на входе и на выходе.

    Выбирая медную трубу для самостоятельного изготовления змеевика, нужно обратить внимание на толщину стенок. Она должна быть не менее 1 мм. В противном случае при намотке труба будет деформироваться. Трубу, по которой осуществляется вход хладагента, располагают в верхней части емкости.

    Испаритель теплового насоса можно выполнить в двух вариантах – в виде емкости с находящимся в ней змеевиком и в виде трубы в трубе. Поскольку, температура жидкости в испарителе небольшая, емкость можно выполнить из пластиковой бочки. В эту емкость помещается контур, который выполняется из медной трубы.

    В отличие от конденсатора, спираль змеевика испарителя должна соответствовать диаметру и высоте выбранной емкости. Второй вариант испарителя: труба в трубе. В таком варианте трубка с хладагентом размещается в пластиковой трубе большего диаметра, по которой циркулирует вода.

    Длина такой трубы зависит от планируемой мощности насоса. Она может быть от 25 до 40 метров. Такую трубу сворачивают в спираль.

    Терморегулирующий клапан относится к запорно-регулирующей трубопроводной арматуре. В качестве запорного элемента в ТРВ используется игла. Положение запорного элемента клапана обуславливается температурой в испарителе.

    Это важный элемент системы имеет довольно сложную конструкцию. В ее состав входят:

    • Термоэлемент.
    • Диафрагма.
    • Капиллярная трубка.
    • Термобаллон.

    Эти элементы могут прийти в негодность при высокой температуре. Поэтому во время работ по пайке системы клапан следует изолировать при помощи асбестовой ткани. Регулирующий клапан должен соответствовать производительности испарителя.

    После проведения работ по изготовлению основных конструкционных частей наступает ответственный момент сборки всей конструкции в единый блок. Наиболее ответственным этапом является процесс закачки хладагента или теплоносителя в систему.

    Самостоятельное проведение подобной операции вряд ли по силам простому обывателю. Тут придется обратиться к профессионалам, которые занимаются ремонтом и обслуживанием климатического оборудования.

    У работников этой сферы, как правило, имеется необходимое оборудование. Помимо заправки хладагента они могут протестировать работу системы. Самостоятельная закачка хладагента может привести не только к поломке конструкции, но и к тяжелым травмам. Кроме того, для запуска системы так же необходимо специальное оборудование.

    При запуске системы происходит пиковая пусковая нагрузка, составляющая, как правило, около 40 А. Поэтому запуск системы без пускового реле невозможен. После первого пуска необходима регулировка клапана и давления хладагента.

    К выбору хладагента стоит отнестись со всей серьезностью. Ведь именно это вещество по сути считается основным “переносчиком” полезной тепловой энергии. Из существующих современных хладагентов наибольшей популярностью пользуются фреоны. Это производные углеводородных соединений, в которых часть атомов углерода замещается на другие элементы.

    В результате проведения этих работ получилась система с замкнутым контуром. В нем будет циркулировать хладагент, обеспечивая отбор и перенос тепловой энергии от испарителя к конденсатору. При подключении тепловых насосов к системе теплоснабжения дома следует учитывать, что температура воды на выходе из конденсатора не превышает 50 – 60 градусов.

    В связи небольшой температурой тепловой энергии, вырабатываемой тепловым насосом, в качестве потребителя тепла нужно выбирать специализированные приборы отопления. Это может быть теплый пол или же объемные низко-инерционные радиаторы из алюминия или стали с большой площадью излучения.

    Самодельные варианты тепловых насосов наиболее уместно рассматривать в качестве вспомогательного оборудования, которое поддерживает и дополняет работу основного источника.

    С каждым годом конструкции тепловых насосов совершенствуются. В промышленных образцах, предназначенных для бытового использования, используются более эффективные теплопередающие поверхности. В результате производительность систем постоянно растет.

    Немаловажным фактором, который стимулирует развитие подобной технологии производства тепловой энергии, является экологическая составляющая. Подобные системы помимо того, что являются довольно эффективными, не загрязняют окружающую среду. Отсутствие открытого пламени делает его работу абсолютно безопасной.

    Выводы и полезное видео по теме

    Видео #1. Как сделать простейший самодельный тепловой насос с теплообменником из РЕХ трубы:

    Видео #2. Продолжение инструктажа:

    В качестве альтернативных систем отопления довольно давно используются тепловые насосы. Эти системы обладают надежностью, длительным сроком службы и, что немаловажно, безвредны для окружающей среды. Они всерьез начинают рассматриваться, как очередной шаг на пути развития эффективных и безопасных систем отопления.

    Хотите задать вопрос или рассказать об интересном способе сооружения теплового насоса, не упомянутом в статье? Пишите, пожалуйста комментарии в расположенном ниже блоке.

    Комментировать
    1 просмотров
    Комментариев нет, будьте первым кто его оставит

    Это интересно
    Adblock
    detector